RBE/CS 526 – Human-Robot Interaction (Graduate)

This course will introduce the fundamental concepts and theories of human-robot interaction, as well as research methodologies. The lecture topics include: (1) Framework of human-robot teaming; (2) Level of autonomy; (3) human-robot interfaces for direct and supervisory control; (4) methods and metrics for evaluating interface usability; and (5) user study design. It will refer to the recent research papers to exemplify the design of human-robot interfaces and robot autonomy for cognitive and physical assistance, as well as the interfaces and approaches for robot learning from human demonstrations. Students in this course will work on (1) Individual Paper Reading and Team Literature review; (2) Algorithm implementation; and (3) Courses Projects of design and/or evaluation human-robot interfaces

RBE 550 – Motion Planning (Graduate)

This course covers motion planning algorithms and their applications on mobile robots and manipulator robots (arms and hands). Topics include search algorithms, combinatorial and sampled based motion planning methods, manipulation and grasping planning, and path planning with non-holonomic contraints. It also introduces methods for motion planning under uncertainty and via learning from demonstration. Students will work on individual assignments that involve implementation of motion planning algorithm in Matlab and Python, and work team projects on a tele-nursing manipulator mobile robot using python and C/C++.

RBE 595 – Synergy of Human and Robotic Systems (Graduate)

This course introduces the theory and practice for the motion control of human-compatible robotic systems. Ideally, the motion of a wearable robot system should be dynamically transparent to its operator, sensitively responsible to the voluntary and involuntary motions of its operator. When used for robot-assisted stroke rehabilitation, a wearable robot system is expected to assist to the operator’s motor skills and correct abnormal arm motions resulting from motor disabilities. In this course, students will study the biomechanics of human motion, the theories of human motion control, and the methods for controlling biologically-compatible robots. Students will also experimentally investigate human motions using a Vicon motion capture system, propose and test their hypothesis on human motion control strategies, and implement motion control algorithms on wearable robots and/or arm-like robotic manipulators.

RBE 420X – Human Factors and Human-Robot Interface (Undergraduate)

This is an introductory course on human-robot interaction, offered to junior and senior undergraduate students. It will introduce (1) the behavior and preference of human motor control and motor learning, and (2) how they influence the design of human-robot interface and the dynamics of human-robot interaction. Students will also learn how to conduct experimental studies to design and evaluate the technological and social impacts of human-robot interfaces. Students in this course will work on interdisciplinary projects, which may involve working with experts in robotics, social science, nursing, and education. This course is designed under the scope of the NSF-sponsored Future of Robots in the Workplace – Research & Development (FORW-RD) Program at WPI (https://wp.wpi.edu/forwrd/), which aims to provide comprehensive, multi-disciplinary training on the Robotic Interfaces and Assistants for the Future of Work.

RBE 4815 – Industrial Robotics (Undergraduate)

This course introduces students to robotics within manufacturing systems. Topics include: classification of robots, robot kinematics, motion generation and transmission, end effectors, motion accuracy, sensors, robot control, safety systems, and automation. This course is a combination of lecture, laboratory and project work, and utilizes industrial robots. Through the laboratory work, students will become familiar with robotic programming (using the RAPID robotic programming language for the ABB robot) and the robotic teaching mode (the FlexPendant). The experimental component of the laboratory exercise measures the motion and positioning capabilities of robots as a function of several robotic variables and levels, and it includes the use of experimental design techniques and analysis of variance.