ORIGINAL PAPER

R. Prusty · R. L. Keil

SCH9, a putative protein kinase from *Saccharomyces cerevisiae*, affects *HOT1*-stimulated recombination

Received: 24 April 2004 / Accepted: 21 July 2004 / Published online: 3 September 2004 © Springer-Verlag 2004

Abstract HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOTI and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. $RAS2^{val19}$, which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and $RAS2^{\text{val19}}$, the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.

R. Prusty · R. L. Keil (⊠) Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA E-mail: rkeil@psu.edu Tel.: +1-717-5318595

Fax: +1-717-5317072

Present address: R. Prusty Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA **Keywords** Transcription-stimulated recombination \cdot HOT1 \cdot Recombination hotspot \cdot SCH9 \cdot Protein kinase A (PKA)

Introduction

Homologous recombination does not occur with equal likelihood in all portions of the genome. Instead, there are localized regions in which the frequency of exchange is relatively high, termed hotspots, or relatively low, termed coldspots. Exchange at hotspots appears to constitute a significant fraction of the recombination that occurs in the genome as a whole. Hotspots (for reviews see Lichten and Goldman 1995; Paques and Haber 1999; Aguilera et al. 2000; Petes 2001) are thought to enhance the rate-limiting step in genetic exchange, which is generally considered to be initiation. Studies of recombination hotspots have provided insights into the complex processes involved in the initiation of genetic exchange.

HOT1 is a mitotic recombination hotspot derived from the non-transcribed spacer (NTS) regions of the rDNA repeat unit (Keil and Roeder 1984). When inserted at novel locations in the yeast genome, in *HOT1* stimulates both inter- and intra-chromosomal recombination at adjacent sequences. It has been proposed that this hotspot may play a role in the maintenance of sequence homogeneity among the tandem rDNA repeat units (Keil and Roeder 1984). However, the mechanism(s) by which *HOT1* stimulate(s) mitotic exchange remain(s) unknown.

HOT1 sequences correspond closely to the enhancer and initiation sites for transcription of rDNA by RNA polymerase I (Voelkel-Meiman et al. 1987; Huang and Keil 1995). Evidence from previous work indicates that high levels of transcription initiated within *HOT1* by RNA polymerase I are necessary for the recombination-stimulating activity of this hotspot (Voelkel-Meiman et al. 1987; Stewart and Roeder

Communicated by A. Aguilera

1989; Huang and Keil 1995). In large part, *cis*-acting mutations within the *HOT1* element that decrease the recombination activity also decrease transcription (Stewart and Roeder 1989; Huang and Keil 1995), suggesting a close association between recombination and transcription.

Several other reports have also suggested that high levels of transcription stimulate recombination in yeast. Thomas and Rothstein (1989) tested the recombination frequency of a gal10-URA3-gal10 duplication in a strain lacking either GAL4, a positive regulator of galactoseinduced gene expression, or GAL80, a repressor of Gal4p-induced transcription. They reported a fifteenfold increase in the rate of recombination in $gal80\Delta$ strains in which transcription is constitutive. Using various promoter mutants they showed that sequences within the integrated plasmids were responsible for the altered recombination. When the weak ADE6 promoter in Schizosaccharomyces pombe is replaced with the strong ADH1 promoter, recombination in ADE6 is increased seven-fold in mitosis and 25-fold during meiosis (Grimm et al. 1991).

To understand the mechanism of action of HOT1 we isolated *trans*-acting HOT1 __recombination mutants (*hrm*) that alter *HOT1*-stimulated exchange (Lin and Keil 1991). The *hrm2-1* mutation decreases *HOT1* activity and mitotic recombination in the native rDNA array, but does not affect mitotic exchange in other portions of the genome. This mutation also affects cell growth, as evidenced by the small size and the pale pink color of *ade2* colonies, compared to the large, red colonies formed by the Hrm⁺ control strains. The *HRM2* gene was cloned based on its ability to

complement both the growth and *HOT1*-recombination defects of *hrm2-1* strains. *HRM2* is identical to *SCH9*, a gene that encodes a putative kinase involved in a nutrient-sensing signaling pathway (Toda et al. 1988; Crauwels et al. 1997). Mutation of *SCH9* increases stress resistance and longevity of non-dividing yeast cells (Fabrizio et al. 2001), but decreases the life span of replicating cells (Defossez et al. 1999). *SCH9* also affects critical cell size at Start in the cell cycle (Jorgensen et al. 2002).

Materials and methods

Strains and media

Yeast strains used in these studies (Table 1) were derived from K2307 or K2302 (Lin and Keil 1991) by transformation or genetic crosses. Null mutant strains were generated by PCR-mediated gene disruption using the *loxP-kanMX-loxP* cassette (Guldener et al. 1996) to precisely replace the entire ORF with a gene that confers resistance to G418 (G418 ^R). Appropriate gene disruptions by this cassette were confirmed by Southern analysis (Sambrook et al. 1989) or PCR. The *Escherichia coli* strain MC1066 [*leuB trpC pyrF::*Tn5 (Kan^R) *araT lacX74 del strA hsdR hsdM*; obtained from M. Casadaban] was used for propagating plasmids.

Growth media containing G418 for yeast was prepared by adding 200 mg of G418 sulfate (Geneticin, Life Technologies) per liter of YPD. Other growth media for yeast (Lin and Keil 1991) and bacteria (Sambrook et al. 1989) were prepared as described previously.

i abie i i case serams asea	Table 1	Yeast	strains	used
-----------------------------	---------	-------	---------	------

^a sch9- Δ 1 and gpa2- Δ 1 are precise deletions of SCH9 and G-PA2 respectively, and contain the loxP-kanMX-loxP module (Guldener et al. 1996)

Strain	Genotype	Source
K2307	MAT ahis4-260::URA3::his4-A::HOT1 leu2::ADE5,7::leu2-3,112::HOT1 ade2-1 ade5 trp1-HIII ura3-52 lys2-ABX::CAN1::LYS2 can1	Lin and Keil (1991)
K2302	MAT ahis4-260::URA3::his4- Δ leu2::ADE5,7::leu2-3,112 ade2-1 ade5 trp1-HIII ura3-52 lys2- Δ BX::CAN1::LYS2 can1	Lin and Keil (1991)
K4691	$sch9-\Delta 1^{a}$ in K2307	This study
K4693	<i>sch9</i> -Δ1in K2302	This study
K5651	$gpa2-\Delta 1^{a}$ in K2302	This study
K5656	$gpa2-\Delta$ 1in K2307	This study
HRM138	hrm2-1in K2307	Lin and Keil (1991)
HRM142	<i>MAT</i> α <i>hrm2-1 his-260::URA3::his4-</i> Δ::HOT1 leu2::ADE5,7::leu2-3,112::HOT1 ade2-1 ade5 trp1-HIII ura3-52 lys2-ΔBX::CAN1::LYS2 can1	This study
HRM201	<i>MATa</i> leu2::ADE5,7::leu2-3,112::HOT1 ade2-1 ade5 trp1-HIII ura3-52 lys2-ΔBX::CAN1::LYS2 can1	This study
HRM221	hrm2-1in HRM201	This study
HRM759	$MAT\alpha$ sch9- Δ 1 leu2::ADE5,7::leu2-3,112::HOT1 ade2-1 ade5 trp1-HIII ura3-52 lys2- Δ BX::CAN1::LYS2 can1	This study
HRM764	$\hat{M}AT\alpha$ sch9- Δ 1 his4-260::URA3::his4- Δ ::HOT1 leu2::ADE5,7::leu2-3,112::HOT1 ade2-1 ade5 trp1-HIII ura3-52 lys2- Δ BX::CAN1::LYS2 can1	This study
RLK98-2A	MATahis4-260 leu2-3,112 ade2-1 trp1-HIII ura3-52 lys2-ΔBX::CAN1::LYS2 can1 rDNA:: ADE2 rDNA:: URA3	Keil and McWilliams (1993)
RLK183-2B	sch9-Alin RLK98-2A	This study

DNA and RNA manipulations

Restriction and modification enzymes were purchased from various manufacturers and used according to their recommendations. Standard protocols were used for plasmid (Sambrook et al. 1989) and yeast (Rose et al. 1990) DNA isolation. Primer extension analysis was performed on 50-µg samples of total cellular RNA from yeast as previously described (Huang and Keil 1995). Levels of transcripts were determined using a Molecular Dynamics PhosphorImager 425E in the Macromolecular Core Facility of the M. S. Hershey Medical Center. Normalized percentage transcriptional activity was determined as described previously (Huang and Keil 1995).

HRM221, an *hrm2-1* mutant strain containing the *HOT1::leu2::ADE5,7::leu2* construct required for the colony-color sectoring assay (described below), was used to clone the wild-type *HRM2* gene from a yeast-genomic library constructed in YCp50 (Rose et al. 1987). To localize the *HRM2* gene on the genomic insert in this plasmid (pL3033), $\gamma\delta$ transposon mutagenesis (Guyer 1983) was performed. Transposon insertions in this genomic insert were isolated and tested for their ability to complement the growth and recombination phenotypes of *hrm2-1* mutants.

A multicopy plasmid containing only *TPK1* was constructed by inserting the 1.9-kb *Bst*YI fragment containing *TPK1* into the compatible *Bam*HI site of YEplac112 (Gietz and Sugino 1988). The multicopy *TPK2* plasmid was constructed by inserting the 1.9-kb *Bgl* II fragment of pAPK8-1 (provided by K. Tatchell) that contains *TPK2* into the *Bam* HI site of YEplac112 (Gietz and Sugino 1988). The *RAS2* val19 plasmid was kindly provided by J. Broach.

Fluctuation tests, statistical analysis, and genetic analysis

At least three cultures from three independent transformants were used in fluctuation tests to determine recombination rates (Lin and Keil 1991). Calculation of recombination rates and statistical analyses were performed as described previously (Yuan and Keil 1990). Cultures used to assay *HOT1*-stimulated recombination were grown in SC, while cultures employed for assessment of rDNA exchange were grown in SC-ura since the frequency of loss of the *URA3* marker from the rDNA is relatively high. Tetrad analysis was conducted by standard procedures (Rose et al. 1990).

Multicopy suppressors

A multicopy yeast genomic DNA library (Carlson and Botstein 1982) was transformed into HRM221, which contains the *hrm2-1* mutation as well as the *HOT1*-specific colony-color sectoring recombination substrate.

Suppressors of the slow-growth and pale-pink color phenotypes of this strain were identified. Plasmids containing genes that suppressed these phenotypes were recovered into *E. coli* (Hoffman and Winston 1987). Recovered plasmids were retransformed into the original HRM221 strain to assess the plasmid dependence of the suppression. Genomic DNA contained within plasmids of interest was identified by sequencing insert DNA at the vector-insert border. The gene within the insert that is responsible for suppression was identified by insertion of linkers at unique restriction sites in the fragment, or by deletion of portions of the insert using convenient restriction sites. Finally, subcloning of the gene of interest confirmed its identity.

Results

HRM2 is identical to SCH9

The *hrm2-1* allele was identified in a hunt for mutants that specifically alter *HOT1* activity (Lin and Keil 1991). In addition to decreased levels of *HOT1*-stimulated exchange (Fig. 1; compare wt/YCp to *hrm2-1*/YCp), *hrm2-1* mutants show a lower level of rDNA recombination (Lin and Keil 1991; Table 2) and a growth defect producing small, light pink colonies as compared to the large, red colonies produced by *HRM2 ade2* cells (Table 3). The wild-type *HRM2* gene was cloned by virtue of its ability to complement the *HOT1* hyporecombination phenotype and the growth defects of the *hrm2-1* mutant, HRM221. To assay *HOT1* activity, the

Fig. 1 *hrm2-1* affects *HOT1*-stimulated recombination. When present in an *HRM2* (*SCH9*) *ade2 ade5* strain, the *HOT1::le-u2::ADE5,7::leu2* duplication produces red colonies with white sectors that result from excision of the *ADE5,7* gene. The level of *HOT1* activity can be visually assessed by the number of white sectors present in a colony. The *hrm2-1* mutation reduces *HOT1*-stimulated exchange, and few if any white sectors are observed in *hrm2-1* colonies. The *SCH9* gene on a centromeric plasmid (YCp) corrects the recombination defect of *hrm2-1* mutants. Deletion of *SCH9* reduces *HOT1*-stimulated recombination

Table 2 Effects of *hrm2-1* and *sch9-*∆1on mitotic recombination

1 . ..

Genotype	Recombination rate					
	HOT1		rDNA	Non-HOT1		
	Ura ⁻ (×10 ⁵)	His ⁺ Ura ⁺ (×10 ⁶)	Ura ⁻ (×10 ⁵)	Ura ⁻ (×10 ⁶)	His ⁺ Ura ⁺ (×10 ⁶)	Can ^R (×10 ⁵)
SCH9 hrm2-1 sch9-∆1	33.1 4.4** 7.1**	8.4 2.4* 2.2*	8.7 2.2* 2.5*	6.8 nd 5.9	2.2 nd 2.7	4.7 2.4 5.3

* P < 0.05, ** P < 0.01 as compared to *SCH9*; recombination rates are not significantly different between *hrm2-1* and *sch9-* Δ 1 strains. nd, not determined

qualitative colony-color sectoring assay involving recombination of a HOT1::leu2::ADE5,7::leu2 duplication was used (Lin and Keil 1991). Excision of the ADE5,7 gene produces white ade2 ade5 sectors in an otherwise red *ade2* colony. While the Hrm⁺ strain produces colonies with approximately five to fifteen sectors, hrm2-1 strains produce colonies that usually have less than three white sectors (Fig. 1; compare wt/ YCp to hrm2-1/YCp). From approximately 75,000 transformants obtained from a centromeric yeast library, six wild-type sized colonies that had ten or more white sectors were identified (Fig. 1, see hrm2-1/YCp SCH9). In addition, nineteen transformants generated normal sized colonies but did not show Hrm⁺ levels of sectoring. The six strains in which both phenotypes reverted were plated on media containing 5FOA to induce loss of the library plasmid. Two of the six strains exhibited decreased levels of HOT1-recombination and grew poorly upon plasmid loss, indicating that genomic DNA present on these plasmids complemented the hrm2-1 mutant phenotypes. Plasmids were rescued from these transformants and retransformed into the original HRM221 (hrm2-1) strain. Both plasmids restored normal growth (Table 3) and wild-type levels of HOT1specific recombination. Restriction mapping of these two plasmids indicated that the inserts they contained were identical (data not shown).

Transposon mutagenesis (Guyer 1983) of one of these plasmids, pL3033, was used to localize the complementing gene. Three independent plasmids containing transposon insertions that destroyed the ability of pL3033 to complement the recombination and growth defects of *hrm2-1* mutants were isolated. Sequencing from the ends of these three transposons showed that in each case the transposon had inserted within the ORF of the previously characterized *SCH9* gene (Toda et al. 1988).

Precise deletions of the SCH9 ORF (sch9- Δ 1) in strains K2307 and K2302 were constructed by PCRmediated gene disruption (Guldener et al. 1996). sch9- Δ 1 (G418^R) strains exhibit a HOT1 -specific hyporecombination phenotype (Fig. 1, see *sch9*- Δ 1/YCp) and the same growth defects as the *hrm2-1* mutant (Table 3). One of the *sch9*- Δ 1 transformants, K4691, was mated with the hrm2-1 strain HRM142. Random spore analysis showed that approximately 50% of the spores (25 spores out of 52) were G418^R and half (27 spores) were G418^S. All spores examined had decreased levels of HOT1-stimulated recombination similar to hrm2-1 control strains. Colonies obtained from all 52 spores were also small and exhibited the pale pink color of the hrm2-1 mutant. These results show that the G418 R marker is less than 2 cM from the HRM2 locus and indicate that SCH9 is identical to HRM2. To confirm this, the sequences of SCH9 from our wild-type and hrm2-1 strains were determined. The sequence of SCH9 in our wild-type strain is identical to that reported in the Saccharomyces Genome Database (http://www.yeastgenome.org/). The sequence of this gene in the hrm2-1strain contains two closely linked mutations: an A inserted in a run of 4As extending from bases 1844–1847 of the wild-type SCH9 reading frame and an A to T transversion at base 1849 (the sequence of this gene in hrm2-1 beginning at base 1844 of the SCH9 reading frame is AAAAATTATC, where the inserted A is

Table 3 Colony morphology and generation time	Genotype	Colony morphology ^a	Generation time (min) ^{b,c}
^a Of strains containing the	Wild type and mutants HRM2 (SCH9) hrm2-1 sch9-Δ1	Large red colonies; many white sectors Small pink colonies; few white sectors Small pink colonies; few white sectors	98 217** 239**
<i>leu2::ADE5,7::leu2-3,112::HO-</i> <i>T1</i> duplication ^b In synthetic medium lacking appropriate nutrients to main- tain plasmid selection when ne- cessary	Cloning SCH9 SCH9/YCp SCH9/YCp SCH9 hrm2-1/YCp hrm2-1/YCp SCH9	Large red colonies; many white sectors Large red colonies; many white sectors Small pink colonies; few white sectors Large red colonies; many white sectors	108 101 188** 98
^{co} All standard deviations were less than 10% of the generation time ** $P < 0.01$ as compared to the appropriate control (<i>SCH9</i> ,- <i>SCH9</i> /YCp or <i>SCH9</i> /YEp) ^d $P < 0.01$ as compared to <i>hrm2-1</i> /YEp	YEp/TPK1; YEp/SFP1 SCH9/YEp TPK1 SCH9/YEp TPK1 SCH9/YEp SFP1 hrm2-1/YEp TPK1 hrm2-1/YEp SFP1	Large red colonies; many white sectors Large red colonies; many white sectors Large red colonies; many white sectors Small pink colonies; few white sectors Medium red colonies; many white sectors Medium red colonies; many white sectors	103 108 128** 191 150** ^d 172** ^d

underlined and the T resulting from the transversion is indicated in bold). Following the inserted A, 12 novel amino acids are encoded prior to the occurrence of a premature termination codon leading to the loss of approximately 200 amino acids normally present at the C-terminus of the wild-type protein.

sch9- Δ 1 decreases HOT1-stimulated recombination

Effects of sch9- Δ 1 on HOT1-stimulated recombination were quantitated using a HOT1::his4-Δ::URA3::his4-260 duplication (Fig. 2A, and Lin and Keil 1991). This contains a URA3 gene and pBR322 sequences flanked by mutant his4 genes. The frequency of Ura⁻ excision or Ura⁺His⁺ gene replacement recombinants (Fig. 2A) provides a measure of HOT1 activity. The frequency of both excision and gene replacement decreased approximately four- to five-fold in *sch9*- Δ 1 strains as compared to the wild-type strain (Table 2), indicating that loss of Sch9p function decreases both types of HOT1-stimulated recombination events. Recombination rates for sch9- Δ 1 mutants are not statistically different from those observed for *hrm2-1* strains (Table 2). Homologous mitotic recombination stimulated by HOT1 has been proposed to be involved in maintaining homogeneity among rDNA repeats (Keil and Roeder 1984). The effect of sch9- $\Delta 1$ on mitotic intrachromosomal rDNA exchange was assayed by determining the rate of loss of a URA3 gene inserted in the rDNA array of haploid strains (Fig. 2C, and Lin and Keil 1991). In sch9- $\Delta 1$ strains the rate of rDNA recombination decreased

Fig. 2A–C Recombination substrates. **A** The *HOT1::his4-*Δ::UR-A3::his4-260 duplication contains two mutant *HIS4* genes, *his4-*Δ and *his4-260* (indicated by *), flanking a *URA3* marker and pBR322 sequences. *HOT1* is present 5' of the *his4-*Δ gene. Excision events result in the loss of *URA3*, producing Ura⁻ (5FOA^R) cells. Gene replacement events involve repair of the *his4-260* point mutation using information from the *his4-*Δ gene. flis occurs without loss of *URA3*, producing His⁺ Ura⁺ cells. **B** The *lys2::CAN1::LYS2* duplication contains the *CAN1* gene flanked by the *lys2-*ΔBX and *LYS2* genes. The rate of Can^R recombinants assays non-*HOT1* exchange. **C** In this recombination substrate the *URA3* gene is inserted in the rDNA array. Loss of this marker assays rDNA exchange and produces Ura⁻ (5FOA^R) cells

approximately four-fold, similar to the effect observed in *hrm2-1* mutants (Table 2, and Lin and Keil 1991). These results suggest that *SCH9* affects rDNA exchange, possibly due to altered *HOT1* activity in the native rDNA locus. This provides reassurance that *HOT1* activity measured at the ectopic *HIS4* locus is indicative of its normal function in rDNA.

To determine whether loss of *SCH9* is recessive with respect to its effect on *HOT1* recombination, diploid strains heterozygous (*sch9*- Δ 1/*SCH9*) and homozygous (*sch9*- Δ 1/*sch9*- Δ 1) for the *sch9*- Δ 1 mutation were generated. Both strains were heterozygous for the *HOT1::his4*- Δ ::URA3::his4-260 duplication. Rates of Ura⁻ excision and His⁺ Ura⁺ gene replacement in *SCH9*/ *sch9*- Δ 1 diploids were similar to those in *SCH9*/*SCH9* diploids, while those of the *sch9*- Δ 1 / *sch9*- Δ 1 diploids were five-fold lower (data not shown). Rates of non-*HOT1* recombination remained unaltered in all diploids. This indicates that, like the *hrm2*-1 mutation (Lin and Keil 1991), deletion of *SCH9* is recessive with respect to its effect on *HOT1* activity.

We used two different recombination substrates to determine whether sch9- $\Delta 1$ also alters non- HOT1 recombination levels. First, a *his4-* Δ ::URA3::his4-260 duplication lacking HOT1 was used. In this instance the effect of sch9- Δ 1 was monitored with the same recombination substrate used to measure HOT1 activity. Second, a lys2::CAN1::LYS2 recombination substrate lacking HOT1 (Fig. 2B) was assayed. The sch9- $\Delta 1$ mutation did not affect mitotic recombination in either of these substrates (Table 2), indicating that sch9 mutations affect HOT1-stimulated exchange but not non-HOT1 recombination. Taken together, these findings show that loss of SCH9 specifically affects rDNA and HOT1-stimulated recombination. Furthermore, since the effects are similar to those observed in hrm2-1 strains, it appears the mutations in hrm2-1 lead to loss of function.

To determine if overexpression of *SCH9* affects *HOT1* activity, *hrm2-1* or *sch9-* Δ 1 strains were transformed with single-copy (YCp) or multicopy (YEp) vectors containing *SCH9*. The levels of *HOT1*-stimulated recombination in these transformants were not statistically different from each other (data not shown).

In addition, the growth and colony color of the YEp *SCH9* transformants were indistinguishable from those of the YCp *SCH9* transformants.

SCH9 does not affect transcription initiated at HOT1

Several lines of evidence from previous work indicate that the recombination-stimulating activity of *HOT1*

Strains Fig. 3A, B sch9 Δ mutations do not affect transcription initiated at HOT1. A Steady-state levels of transcripts initiated within HOT1 sequences at his4 or rDNA were measured by primer extension analysis in wild-type and sch9- Δ 1 strains. A representative experiment is shown. The expected sizes of extension products are 129 nt for the transcript from HOT1 at his4 (Huang and Keil 1995) and 139 nt for the 35S rDNA precursor (Bayev et al. 1980; Klemenz and Geiduschek 1980). Three products ranging in size from approximately 68 to 75 nt are produced from CYH2, which are consistent with sizes previously reported for the multiple transcription initiation sites of this gene (Schwindinger and Warner 1987). The size standards were supplied with the primer extension kit (Promega) and their positions and lengths (in nt) are indicated next to the gels. The 5' ends of the primers were labeled using T4 polynucleotide kinase. B Primer extension products were quantified using a phosphorimager and normalized against CYH2 transcripts as an internal control as described in Huang and Keil (1995). The dark bars indicate transcription initiated in HOT1 at his4 and the light bars indicate rDNA transcription. The quantitative data are for the experiment shown in A

requires high levels of transcription initiated within this element: (1) deletion of the largest subunit of RNA polymerase I abolishes HOT1 activity (Huang and Keil 1995); (2) premature termination of transcription initiated at HOT1 abolishes recombination activity (Voelkel-Meiman et al. 1987); (3) the transcription initiation site must be oriented such that transcription proceeds through the recombining genes (Voelkel-Meiman et al. 1987), and (4) most *cis*-acting mutations that decrease HOT1 activity also decrease transcription (Stewart and Roeder 1989; Huang and Keil 1995). We assayed for effects of the *sch9*- Δ 1 mutation on transcription initiated within HOT1 sequences at his4, and on transcription of rDNA. Levels of transcription initiated within HOT1 sequences at his4 were quantitated using primer extension analysis (Stewart and Roeder 1989; Huang and Keil 1995). The steady-state level of transcripts from HOT1 in an *sch9*- Δ 1 strain is not decreased compared to the level observed in the wild-type strain [Fig. 3A (lanes marked his4) and B (dark bars)]. The finding that HOT1 transcription is not reduced in *sch9*- Δ 1 strains indicates that altered transcription is not the cause of the reduced HOT1 activity in these mutants. The simplest interpretation is that the *HOT1* hyporecombination phenotype of sch9- Δ 1 strains is independent of transcription initiated within this element. These results do not rule out the possibility that *sch9* mutants have subtle effects, not detected by this assay, on HOT1-dependent transcription at specific stages of the cell cycle. Such changes occurring during a stage of the cell cycle when HOT1stimulated exchange is highly active might alter this recombination.

Since the *sch9*- Δ 1 mutation affects rDNA recombination and growth, we also tested whether *sch9*- Δ 1 strains are defective in rRNA synthesis. Deletion of *SCH9* does not decrease transcription of rDNA [Fig. 3A (lanes marked rDNA) and B (light bars)]. Thus, the reduced rate of rDNA recombination observed in *sch9*- Δ 1 mutants does not result from lower rates of rDNA transcription.

Overexpression of *TPK1* suppresses the *HOT1* recombination defect of *sch9* mutants

Since *hrm2-1* colonies are small and pale pink, transformants containing multicopy plasmids that suppress the growth defects of this mutation are readily identified. Among 85,000 transformants, three large, red colonies were recovered. To confirm that the suppression of the growth defects exhibited by these transformants was plasmid dependent, colonies that had lost these plasmids were examined for growth and color. In all three cases the resulting colonies were small and pale pink, like the parental *hrm2-1* strain (HRM221). To further confirm the plasmid dependence of this suppression, plasmid DNA was recovered into *E. coli* from these transformed into the original HRM221 strain. All three plasmids

Fig. 4 Overexpression of *TPK1* suppresses the *HOT1*-recombination defect of *sch9* mutants. A multicopy plasmid bearing the *TPK1* gene, but not *SFP1*, alleviates the *HOT1*-recombination defects of *hrm2-1* as visualized by the number of white sectors present in the colony

increased the size of hrm2-1 colonies, decreased the generation time of these mutants (Table 3; compare the generation time of hrm2-1/YEp to that of hrm2-1/YEp *TPK1* or hrm2-1/YEp *SFP1*), and changed their color from pink to red.

The three plasmids were tested for their ability to complement the HOT1 recombination defect of hrm2-1 cells based on the colony-color sectoring assay. Two of the three plasmids suppressed the recombination defect of hrm2-1 strains (Fig. 4; see hrm2-1/YEp TPK1). Restriction analysis of these two plasmids showed they were identical. Partial sequence analysis, linker insertion and subcloning showed that TPK1, which encodes a catalytic subunit of protein kinase A and has previously been shown to suppress the growth defect of sch9 strains (Hartley et al. 1994), was responsible for this suppression. To confirm that only TPK1 is required to suppress the hrm2-1 defects, a multicopy YEplac112 (Gietz and Sugino 1988) vector carrying a 1.9-kb BstYI fragment that contains only TPK1 was constructed. This plasmid suppresses both the excisive and gene replacement recombination defects of an *hrm2-1* strain (Table 4). In addition, this plasmid suppresses the HOT1 and rDNA recombination defects, as well as the growth defects, of an *sch9*- Δ 1 strain (Table 4, and data not shown), indicating that TPK1 is a bypass suppressor of these sch9 phenotypes.

Overexpression of *TPK1* presumably activates the cAMP-dependent PKA pathway by increasing the pool of catalytically active PKA subunits. To further assess if the PKA pathway is responsible for the observed suppression, $RAS2^{val19}$, a dominant mutation that constitutively activates adenylate cyclase and thus the PKA pathway, was tested for its ability to suppress *sch9* phenotypes. $RAS2^{val19}$ suppresses both the growth and recombination defects of *hrm2-1* and *sch9-*Δ1 mutants (Table 4), supporting the conclusion that activation of the cAMP-dependent PKA pathway suppresses the

Table 4 Suppressors of *hrm2-1* and *sch9-* Δ 1

	Recombination rate (%)			
Strain/plasmid	Ura	His ⁺ Ura ⁺	Can ^R	
HRM2(SCH9/vector	100	100	100	
hrm2-1/vector	14**	12**	70	
$sch9-\Delta 1/vector$	11**	23**	62	
hrm2-1/YEp TPK1	95	105	94	
sch9- $\Delta 1/YEp TPK1$	48	114	68	
hrm2-1/YCp RAS2 ^{val19}	47	64	136	
sch9- $\Delta 1/YCp RAS2^{val19}$	57	117	77	
hrm2-1/YEp TPK2	10**	nd	36	
sch9-Δ1/YEp TPK2	20**	nd	59	

** P < 0.01 as compared to HRM2(SCH9)/vector; vector = appropriate YCp or YEp control plasmid; nd, not determined

HOT1-specific hyporecombination phenotype of *sch9* mutants.

Isoforms of the catalytic subunit of PKA are encoded by three unlinked genes: TPK1, TPK2 and TPK3. Although products encoded by the TPK genes are closely related, they are only partially redundant in function (Toda et al. 1987; Robertson and Fink 1998; Pan and Heitman 1999; Robertson et al. 2000). Since only TPK1 was identified in the suppressor hunt, we tested whether another TPK gene, TPK2, can suppress the phenotypic defects of the *hrm2-1* and *sch9-\Delta1* strains. When *TPK2* is present on a multicopy vector, it suppresses the growth and color defects of hrm2-1 and sch9- Δ 1 mutants, but does not suppress the HOT1 recombination defects (Table 4). This provides further evidence that PKA subunits encoded by the various TPK genes share some common physiological roles but also have features that distinguish them from each other.

It has been proposed that upstream regulators of Sch9p include the G α protein Gpa2p and its coupled receptor Gpr1p, although other models have also been advanced (contrast Xue et al. 1998 with Kraakman et al. 1999 and Lorenz et al. 2000). If the Sch9p activities relevant to *HOT1* are regulated by Gpa2p, deletion of *GPA2* should have the same effect on *HOT1* activity as deletion of *SCH9*. Yeast strains derived from K2307 and K2302 that contain a precise deletion of *GPA2* (K5656 and K5651, respectively) were constructed. Deletion of *GPA2* has no effect on *HOT1* activity (data not shown). With regard to the *HOT1*-related functions of Sch9p, this suggests either that Gpa2p does not regulate Sch9p or conversely that additional upstream components are involved in this regulation.

The growth and recombination defects of *sch9* strains are separable

As described above, *ade2* yeast strains carrying either the *hrm2-1* mutation or the *sch9-* Δ 1 allele form small, pale pink colonies unlike the large, red colonies formed by *SCH9* strains (Table 3). The doubling time of the mutant strains is approximately twice that of the wild-type

control (see Table 3, and Toda et al. 1988). It is possible that the decreased rates of *HOT1* and rDNA recombination in *sch9* mutants are simply due to the growth defect of these strains. To test this possibility, petite (ρ^0) derivatives of the wild-type K2307 strains were isolated (Slonimski et al. 1968). The generation time of these petites is 210 min, which is similar to the generation time of *sch9* mutants (Table 3). However, *HOT1* and rDNA recombination rates in the petites are not significantly different from the rates in wild-type ρ^+ strains (data not shown). These results indicate that slow growth does not necessarily produce the reduced recombination phenotypes of these mutants.

Further evidence that extends this conclusion comes from identification of two multicopy suppressors that partially suppress the growth defects of sch9 but do not correct the *HOT1* hyporecombination phenotypes. As described above, multicopy TPK2 affects only the growth defects of sch9 mutants. The other growth-defect-specific multicopy suppressor is SFP1, split zinc finger protein, which was identified in our hunt for multicopy suppressors of hrm2-1 mutant phenotypes (see above). SFP1, like SCH9, affects critical cell size at Start in the cell cycle (Jorgensen et al. 2002). The effect of the transcription factor encoded by SFP1 on cell size appears to be linked to its regulation of a number of genes involved in ribosome biogenesis. SFP1 has also been proposed to affect the G2/M (mitosis) transition and the DNA-damage checkpoint pathway (Xu and Norris 1998). When present in an *hrm2-1* strain, YEp SFP1 partially suppresses the growth defects, as evidenced by the decreased generation time (Table 3), but does not affect not the HOT1 recombination defect (Fig. 4, strain hrm2-1/YEp SFP1). YEp SFP1 transformants of K4691, which contains the *sch9*- Δ 1 mutation, behave exactly like hrm2-1/YEp SFP1 transformants, indicating SFP1 is a bypass suppressor of the growth defects of strains that are devoid of Sch9p. The results with TPK2 and SFP1 indicate that the growth defects observed in sch9 mutants are separable from the effects on recombination.

Discussion

To further characterize the recombination-stimulating activity of HOT1, trans-acting mutations that affect the activity of this recombination hotspot are being studied. Four genes, HRM1-HRM4, were identified by mutations that specifically decrease HOT1-stimulated exchange (Lin and Keil 1991). Here we report the cloning and characterization of HRM2, which is identical to SCH9. Examination of the amino acid sequence predicted for the product of SCH9 revealed motifs that are hallmarks of protein kinases, and Sch9p has been implicated in a growth control mechanism that is partially redundant with the PKA pathway (Toda et al. 1988). Deletion of SCH9 decreases both HOT1 and

rDNA recombination. As discussed in more detail below, the effect of *SCH9* on *HOT1* activity does not appear to be due to decreased transcription at the hotspot. Several lines of evidence indicate that the effect on recombination involves a signal transduction pathway. First, *TPK1*, which encodes the catalytic subunit of PKA, is a multicopy suppressor of *sch9* mutations, suggesting that lack of Sch9p can be compensated for by overexpression of another signal transduction component. Second, *RAS2* val19, a constitutive mutation in an upstream component of the PKA pathway, also suppresses the *HOT1* defect of *sch9* mutants. These data indicate that activation of the PKA signaling pathway can compensate for the lack of Sch9p, possibly by permitting illegitimate phosphorylation of substrates.

Another potential role for *SCH9* in DNA transactions is revealed by its effect on transposition of Ty1 elements (Scholes et al. 2001). In contrast to the decrease in *HOT1* and rDNA recombination reported here, mutation of *SCH9* leads to increased mobility of Ty1. Given this difference, it is not clear if Sch9p has similar or different roles in these events. In agreement with our results, altered transcription does not appear to play a role in the effect of *SCH9* on transposon movement.

It is interesting that TPK2, which encodes an isozyme of TPK1, does not suppress the HOT1 recombination defect of *sch9* mutants. It is possible that excess Tpk1p is able to phosphorylate targets of Sch9p that are essential for HOT1 activity while Tpk2p can not. However, overexpression of either TPK1 or TPK2 partially suppresses the growth defects of *sch9* mutants. This indicates that there may be specific targets regulated by Sch9p that alter HOT1 recombination while other targets affect growth.

HOT1-more than transcription

As described in the Results section, numerous lines of evidence indicate that the recombination-stimulating activity of HOT1 requires high levels of transcription. The simplest models for *HOT1* activity envision that increased transcription is sufficient for the recombination-stimulating effect of this element. Increased transcription could facilitate access of the normal mitotic recombination machinery to DNA, or it could introduce recombinogenic lesions. Such simple models are ruled out by our finding that *HOT1* transcription is unaltered in sch9- Δ 1 mutants although HOT1-stimulated recombination is specifically reduced. Thus, transcription is necessary (Stewart and Roeder 1989; Huang and Keil 1995) but not sufficient for HOT1 activity. Previous findings are consistent with this argument. For instance, Huang and Keil (1995) found a correlation between the recombination and transcription effects of most, but not all, cis-acting HOT1 mutations. The most dramatic exception to the correlation involved deletion of a 130bp HindIII-HpaI fragment adjacent to the transcriptional enhancer required for efficient ectopic expression of rDNA (Elion and Warner 1986; Wai et al. 2001). Deletion of this fragment produces only a 20% decrease in transcription but a 90% to 97% decrease in *HOT1* activity (Huang and Keil 1995). At one time it was proposed that high levels of transcription and pausing of replication at the replication fork barrier (RFB) present in the *Hin*dIII-*Hpa*I fragment were necessary for *HOT1* activity (Kobayashi and Horiuchi 1996). Under this model Sch9p could regulate this pausing. However, it was recently shown that RFB is not required for *HOT1* activity (Ward et al. 2000), arguing this is not the role of Sch9p.

The involvement of a putative protein kinase in the activity of HOT1 is reminiscent of the requirement for protein kinases for the recombination-stimulating action of M26 and related meiotic hotspots in S. pombe (reviewed in Fox and Smith 1998; Davis and Smith 2001). A cascade involving the Wis1 and Spc1 protein kinases is required to phosphorylate the Atf1-Pcr1 transcription factor. This phosphorylated factor binds to M26 and related sequences, leading to a localized enhancement of meiotic recombination (Kon et al. 1998; Fox et al. 2000). Binding of Atf1-Pcr1 to M26 does not increase ade6 transcription above the basal level (Kon et al. 1997) but instead may stimulate exchange by remodeling chromatin (Mizuno et al. 1997; Fox et al. 2000) to make it more susceptible to double-strand breaks and/or by recruiting recombination machinery (Kirkpatrick et al. 1999; Steiner et al. 2002). It is not clear whether a basal level of *ade6* transcription is required for *M26* hotspot activity (Davis and Smith 2001). As with M26, the wellcharacterized meiotic recombination hotspot at HIS4 in S. cerevisiae also requires a bound transcription activator (White et al. 1991, 1993; Kirkpatrick et al. 1999). The effect of the bound factor on recombination does not result from activation of transcription, as it has been shown that the activity of this hotspot is independent of transcription (White et al. 1992). Meiotic recombination hotspots that require binding of transcription factors have been termed α -hotspots (Kirkpatrick et al. 1999).

One possible model consistent with our characterization of the role of *SCH9* in *HOT1* activity is that mitotic hotspots differ from meiotic α -hotspots by requiring both high levels of transcription and bound factors that recruit recombination proteins or remodel chromatin to make it more recombinogenic. Under this model, Sch9p could be involved in regulating binding of such factors presumably by phosphorylation. Alternatively, Sch9p could regulate a recombination protein that is specifically involved in rDNA and *HOT1*-stimulated exchange, or a protein that affects DNA:RNA hybrids which play a role in at least some forms of transcription-stimulated recombination (Huertas and Aguilera 2003).

Several other protein kinases affect mitotic recombination in yeast, although their effect on transcriptionstimulated exchange has not been assessed. Of particular interest to this work is the finding that overexpression of Snf1p, which may affect rDNA chromatin structure due to its histone H3 kinase activity, increases rDNA recombination (Lin et al. 2003). Other kinases affecting mitotic recombination include those encoded by *CDC5* (a serine/threonine protein kinase), *PKC1* (protein kinase C), *DUN1* (a kinase required for induction of DNA repair genes), and *TEL1* and *MEC1* (related kinases affecting DNA damage response and telomere length). In contrast to our findings with *SCH9*, mutation of *CDC5* (Hartwell and Smith 1985; Aguilera and Klein 1988), *PKC1* (Huang and Symington 1994), *DUN1* (Fasullo et al. 1999) or *TEL1* and *MEC1* (Craven et al. 2002) generally enhances mitotic recombination, although some mitotic exchange events are negatively affected in *dun1* strains. The mechanisms by which these kinases affect recombination have not been elucidated.

Acknowledgements We gratefully acknowledge Tom Reiner and Jessica Keeley for technical assistance, members of the Keil laboratory for helpful discussions, Drs. Ross Shiman, Anita Hopper, Laura Palmer and Pierre Defossez for critical reading of the manuscript, and Drs. Kelly Tachell and James Broach for providing strains and plasmids. This work was supported in part by a grant (GM-36422) from the National Institutes of Health to R.L.K.

References

- Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination in *Saccharomyces cerevisiae*. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790
- Aguilera A, Chavez S, Malagon F (2000) Mitotic recombination in yeast: elements controlling its incidence. Yeast 16:731–754
- Bayev AA, Georgiev OI, Hadjiolov AA, Kermekchiev MB, Nikolaev N, Skryabin KG, Zakharyev VM (1980) The structure of the yeast ribosomal RNA genes. 2. The nucleotide sequence of the initiation site for ribosomal RNA transcription. Nucleic Acids Res 8:4919–4926
- Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154
- Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growthmedium-induced (FGM) pathway. Microbiology 143:2627– 2637
- Craven RJ, Greenwell PW, Dominska M, Petes TD (2002) Regulation of genome stability by *TEL1* and *MEC1*, yeast homologs of the mammalian ATM and ATR genes. Genetics 161:493–507
- Davis L, Smith GR (2001) Meiotic recombination and chromosome segregation in *Schizosaccharomyces pombe*. Proc Natl Acad Sci USA 98:8395–8402
- Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3:447–455
- Elion EA, Warner JR (1986) An RNA polymerase I enhancer in Saccharomyces cerevisiae. Mol Cell Biol 6:2089–2097
- Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290
- Fasullo M, Koudelik J, AhChing P, Giallanza P, Cera C (1999) Radiosensitive and mitotic recombination phenotypes of the *Saccharomyces cerevisiae dun1* mutant defective in DNA damage-inducible gene expression. Genetics 152:909–919

- Fox ME, Smith GR (1998) Control of meiotic recombination in Schizosaccharomyces pombe. Prog Nucleic Acid Res Mol Biol 61:345–378
- Fox ME, Yamada T, Ohta K, Smith GR (2000) A family of cAMPresponse-element-related DNA sequences with meiotic recombination hotspot activity in *Schizosaccharomyces pombe*. Genetics 156:59–68
- Gietz RD, Sugino A (1988) New yeast- *Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534
- Grimm C, Schaer P, Munz P, Kohli J (1991) The strong *ADH1* promoter stimulates mitotic and meiotic recombination at the *ADE6* gene of *Schizosaccharomyces pombe*. Mol Cell Biol 11:289–298
- Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524
- Guyer MS (1983) Uses of the transposon $\gamma\delta$ in the analysis of cloned genes. Methods Enzymol 101:362–369
- Hartley AD, Ward MP, Garrett S (1994) The Yak1 protein kinase of *Saccharomyces cerevisiae* moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. Genetics 136:465–474
- Hartwell LH, Smith D (1985) Altered fidelity of mitotic chromosome transmission in cell cycle mutants of *S. cerevisiae*. Genetics 110:381–395
- Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of *Escherichia coli*. Gene 57:267–272
- Huang GS, Keil RL (1995) Requirements for activity of the yeast mitotic recombination hotspot *HOT1*: RNA polymerase I and multiple *cis*-acting sequences. Genetics 141:845–855
- Huang KN, Symington LS (1994) Mutation of the gene encoding protein kinase C 1 stimulates mitotic recombination in *Saccharomyces cerevisiae*. Mol Cell Biol 14:6039–6045
- Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA: RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721
- Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400
- Keil RL, McWilliams AD (1993) A gene with specific and global effects on recombination of sequences from tandemly repeated genes in *Saccharomyces cerevisiae*. Genetics 135:711–718
- Keil RL, Roeder GS (1984) Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39:377–386
- Kirkpatrick DT, Fan Q, Petes TD (1999) Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain. Genetics 152:101–115
- Klemenz R, Geiduschek EP (1980) The 5' terminus of the precursor ribosomal RNA of Saccharomyces cerevisiae. Nucleic Acids Res 8:2679–2689
- Kobayashi T, Horiuchi T (1996) A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1:465–474
- Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP (1997) Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 94:13765–13770
- Kon N, Schroeder SC, Krawchuk MD, Wahls WP (1998) Regulation of the Mts1-Mts2-dependent *ade6-M26* meiotic recombination hot spot and developmental decisions by the Spc1 mitogen-activated protein kinase of fission yeast. Mol Cell Biol 18:7575–7583
- Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

- Lichten M, Goldman AS (1995) Meiotic recombination hotspots. Annu Rev Genet 29:423–444
- Lin SS, Manchester JK, Gordon JI (2003) Sip2, an *N*-myristoylated β subunit of Snf1 kinase, regulates aging in *Saccharomyces cerevisiae* by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem 278:13390–13397
- Lin Y-H, Keil RL (1991) Mutations affecting RNA polymerase Istimulated exchange and rDNA recombination in yeast. Genetics 127:31–38
- Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J (2000) The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in *Saccharomyces cerevisiae*. Genetics 154:609–622
- Mizuno K, Emura Y, Baur M, Kohli J, Ohta K, Shibata T (1997) The meiotic recombination hot spot created by the single-base substitution *ade6-M26* results in remodeling of chromatin structure in fission yeast. Genes Dev 11:876–886
- Pan X, Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in *Saccharomyces cere*visiae. Mol Cell Biol 19:4874–4887
- Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in *Saccharomyces cerevisiae*. Microbiol Mol Biol Rev 63:349–404
- Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369
- Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787
- Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci USA 97:5984–5988
- Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243
- Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory course manual . Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Scholes DT, Banerjee M, Bowen B, Curcio MJ (2001) Multiple regulators of Tyl transposition in *Saccharomyces cerevisiae* have conserved roles in genome maintenance. Genetics 159:1449– 1465
- Schwindinger WF, Warner JR (1987) Transcriptional elements of the yeast ribosomal protein gene *CYH2*. J Biol Chem 262:5690– 5695
- Slonimski PP, Perrodin G, Croft JH (1968) Ethidium bromide induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal "petites". Biochem Biophys Res Commun 30:232–239
- Steiner WW, Schreckhise RW, Smith GR (2002) Meiotic DNA breaks at the *S. pombe* recombination hot spot M26. Mol Cell 9:847–855
- Stewart SE, Roeder GS (1989) Transcription by RNA polymerase I stimulates mitotic recombination in *Saccharomyces cerevisiae*. Mol Cell Biol 9:3464–3472
- Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630
- Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
- Toda T, Cameron S, Sass P, Wigler M (1988) *SCH9*, a gene of *Saccharomyces cerevisiae* that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527
- Voelkel-Meiman K, Keil RL, Roeder GS (1987) Recombinationstimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–1079

- Wai H, Johzuka K, Vu L, Eliason K, Kobayashi T, Horiuchi T, Nomura M (2001) Yeast RNA polymerase I enhancer is dispensable for transcription of the chromosomal rRNA gene and cell growth, and its apparent transcription enhancement from ectopic promoters requires Fob1 protein. Mol Cell Biol 21:5541–5553
- Ward TR, Hoang ML, Prusty R, Lau CK, Keil RL, Fangman WL, Brewer BJ (2000) Ribosomal DNA replication fork barrier and *HOT1* recombination hot spot: shared sequences but independent activities. Mol Cell Biol 20:4948–4957
- White MA, Wierdl M, Detloff P, Petes TD (1991) DNA-binding protein RAP1 stimulates meiotic recombination at the *HIS4* locus in yeast. Proc Natl Acad Sci USA 88:9755–9759
- White MA, Detloff P, Strand M, Petes TD (1992) A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the *HIS4* locus in yeast. Curr Genet 21:109–116

- White MA, Dominska M, Petes TD (1993) Transcription factors are required for the meiotic recombination hotspot at the *HIS4* locus in *Saccharomyces cerevisiae*. Proc Natl Acad Sci USA 90:6621–6625
- Xu Z, Norris D (1998) The *SFP1* gene product of *Saccharomyces cerevisiae* regulates G2/M transitions during the mitotic cell cycle and DNA-damage response. Genetics 150:1419–1428
- Xue Y, Batlle M, Hirsch JP (1998) *GPR1* encodes a putative G protein-coupled receptor that associates with the Gpa2p G α subunit and functions in a Ras-independent pathway. EMBO J 17:1996–2007
- Yuan LW, Keil RL (1990) Distance-independence of mitotic intrachromosomal recombination in *Saccharomyces cerevisiae*. Genetics 124:263–273