
 
Finding the Limits of Machine Learning in 
Optimization 
Problem Background 
Autonomous path planning is fundamental to safely integrating robots, self-driving cars and other 

mobile, automated systems into society. Safety is the primary requirement of such systems, but 

business viability imposes additional requirement such as efficiency, speed and robustness. Additionally, 

if robots are to improve society, they need to navigate human spaces in a way that is aesthetically and 

socially pleasing. Given machine learning’s great success in providing algorithmic solutions to essentially 

human-centered problems, e.g., the board game Go, it is natural to ask whether it can also provide 

better path planning for robots. 

A Simple Path Planning Problem 
To initially test machine learning’s capacity to plan robot motion, we create the following artificial 

problem: 

• A robot is placed at a random location in the Cartesian plane with a random velocity. 

• The robot’s task is to reach the origin of the plane as quickly as possible. 

• The robot has a maximum velocity it can achieve. 

• The robot has a maximum acceleration it can apply. 

o The acceleration can be applied in any direction. 

o The acceleration can change instantly. 

We attempted to solve this problem using an Actor-Critic system based on the Actor-Critic network used 

to solve the Lunar Lander environment of the Open AI gym. The Lunar Lander problem is to use machine 

learning to play the old “Lunar Lander” arcade game. It has been robustly solved using a few different 

methods. 

The Lunar Lander has five parameters: position in the Cartesian plane, (𝑥, 𝑦), orientation, 𝜃, and 

velocity, (𝑣𝑥 , 𝑣𝑦). It has thrusters which allow it to apply force in three directions fixed to its body. Its 

task is to land upright on the landing pad. This set of tasks seemed similar enough to the robot planning 

problem for the solution to easily adapt. 

When we applied the Lunar Lander’s Actor-Critic network to the robot path problem, we found that we 

could not achieve a stable or robust solution. Most of the time, we did not reach a network which would 

travel to the origin and stop. We could occasionally create parameters and sequences of runs which 

would perform this task; however, these solutions could easily disappear if we trained any further. 

The network would typically reach a solution where it commanded accelerations along one of the four 

diagonal directions. It would also typically move the robot to one of the axes, and then it would remain 

in place or slowly move away from the origin. 



The Actor-Critic network depends upon the cost function used to evaluate performance. We believe our 

cost function rewarded getting to the origin as quickly as possible, but it may be the problem is in our 

cost function. The robot’s progress is simulated and monitored at distinct time increments. The robot is 

rewarded every step. There are threecases: 

• We are close enough to the target to consider ourselves finished: 
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o 𝑁𝐿  is the number of time increments that the simulation is allowed to proceed, this 

ensures that the reward for finishing is greater than the accumulated reward for any 

other outcomes. 
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, 4))) term penalizes the robot if it cannot reduce its velocity 

to zero at the origin. 

• We have moved beyond a reasonable distance to the origin 

o −𝐾𝐹 𝑁𝐿 

o This ensures the robot loses at least as many points as it could have gained from any 

other option if it is going away from the origin with no clear return. 

• We are neither close nor far from the origin 

o (𝑅𝑁 − 𝑟) ⋅ (1 −
1

2
√min(

|𝑣|

𝑣𝑠𝑡𝑜𝑝
, 4)) 

o This rewards you if you are within 𝑅𝑁, and penalizes you if you are outside that radius. 

o The velocity term rewards slowing down as you approach the origin. 

Further, the network’s training depends upon several parameters and the choice of nonlinear elements. 

These choices may have been flawed in some fashion. 

Questions 

Is there actually a simple solution to the basic path planning problem? 
If the robot has its velocity directed parallel to the line joining it with the origin, there is a provably best 

control algorithm: 

• Accelerate toward the origin, until you reach the maximum velocity. 

o The maximum velocity may be set by the robot’s maximum velocity or by your distance 

to the origin. 

• When you are at the correct distance to stop on the origin when you decelerate at your 

maximum, begin decelerating at your maximum. 

In any other orientation, it seems like a good solution is to accelerate at your maximum rate toward the 

origin but proving this seems hard. The fact that your maximum velocity is constrained also makes this 

more difficult. 



Is this a properly posed question? 
Our system has few constraints. The Lunar Lander operates in the presence of gravity and the 

acceleration is constrained, at least in direction. Might it be that our problem is not very stable, and the 

numerical limitations of network learning and approximation cannot easily develop a robust solution? 

One interesting sideline is to ask whether other classical optimization problems could be solved through 

a machine learning algorithm. Could a neural network solve the brachistochrone problem? The robot 

control problem feels like a similar variational problem.  

Is there a network design and training combination which makes this a robustly solvable 

problem? 
There are several parameters to select when creating the network. The depth and width of the network 

and the type of nonlinearities used seem particularly important. Further, training depends upon 

allowing the network to see a sufficient representation of the robot’s parameter space. How do we 

optimize training trajectory, the learning rate and other parameters controlling how the network 

samples the function it is trying to approximate? What would a good network approximation of the 

good control law be? 

How do we develop trust in machine learning for path planning? 
The path planning posed seems so simple that machine learning should be able to solve it. Further, it is 

so simple that we can see when machine learning is performing poorly. In real path planning, the 

environment and the problem are significantly more complex, and the solutions are not obvious.  

The most dangerous outcome is for a machine learning algorithm to provide a plausible path-planning 

network, which is unreliable and sensitive to input conditions. Are there elements of the simple problem 

and the success or failure of networks to solve it which can guide our evaluation of more complex 

problems? 
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