
Pre-processing and model identification from sparse non-
uniform data 

General definitions for the proposed problems 

With abundance of data, data-driven model identification has become an important 
problem in dynamical systems and its allied fields. In health-care related fields, the ever-
increasing reliance on patient-specific data is becoming common place. This is even more 
so for diseases with complex pathology, such as Early Stage Renal Disease (ESRD).  The 
availability of abundant data and use of mechanistic physiology-based models to provide 
treatments is becoming acceptable. However, in some renal pathophysiologies, the 
underlying mechanisms exhibiting the dynamical behavior of measured clinical variables 
are obscured. Therefore, data-driven model identification techniques must be used. 
However, there are a few issues that hinder the successful use of these techniques. The 
multiscale nature of these pathologies, and unequal sampling frequencies of the observed 
variables makes the application of data-driven model derivation difficult.  

Let 𝑓:R𝑁 ↦ R𝑁  be a function that defines a dynamical system of interest, such as: 

�̇� = 𝑓(𝑥, α⃗⃗⃗) 

where 𝑥(𝑡) is a N-dimensional vector that fully defines the state of the system, and α⃗⃗⃗ is a m-
dimensional vector of parameters. Let 𝑥(𝑡) represent a trajectory of the dynamical system, 
given the initial condition 𝑥0 = 𝑥(𝑡 = 0).  The goal of this approach is to use observational 
patient data to infer an appropriate form of the dynamical system f (see references a-c 
below), along with the parameters �⃗� . 

 

Let 𝑋 be a set of this observational data that represents the time series for 𝑥(𝑡). However, 
this representation is not resolved uniformly in time and each variable’s data varies in 
sparsity and noise amplitude. More generally, one can say that: 

𝑋𝑖𝑗 = 𝑥𝑖(𝑡𝑖𝑗) + A𝑖𝒢(μ = 0, σ2 = σ𝑖
2) (1) 

 

where A𝐽 is the noise amplitude, and  𝒢 is a Gaussian distribution. Important to note is that 

for each variable 𝑥𝑖 there is an associated variance σ𝑖
2, and that different variables have a 

different rate of missing values (or are sampled at different rates). The timestamps 𝑡𝑖𝑗 is a 

jagged array:  the number of columns within each row is different, and the sampling rate 
within each row is nonuniform.  For realistic data sets, there is a tradeoff: variables with a 
higher sampling rate (sampled two to three values a week) tend to have a very high 



variance, and variables with low variance have a very low sampling rate (one value every 
three months).  

While the process of finding f  from X is well established for well-resolved data, extending 
these ideas to sparse data sets requires a better quantitative understanding of the given 

data.  These characteristics are needed to reliably modify the method described in the 

references in order to apply it to the many clinical problems where the available data are 
obscured by the differential sampling rates among clinical variables. The tasks required for 

this problem are based on the references below, but alternate approaches are welcome that 

account for differentially sampled datasets of a multiscale physiological system. 

Pre-Processing 

1. Given the data set X, estimate the underlying variance to each different variable, i.e., 
estimate the values σ𝑖

2.  A robust estimate of the data variance σ𝑖
2 is needed to inform 

Gaussian process interpolation of the time series {Xij}. 

2. Given the data set X, recover an approximation for the original time series 𝑥𝑖(𝑡) for 
i=1,…,N, i.e., find an approximation for the underlying value of the state variable 𝑥𝑖(𝑡) 
(eq. (1)) for specific values of t, and the derivative 𝑥�̇�(𝑡). 

Inferring the Dynamical System 
Given the data set 𝑋, estimate at specific values of 𝑡 an expected value and variance for the 
variables 𝑥𝑖(𝑡) and their derivative �̇�𝑖(𝑡), for every 𝑖. The values of 𝑡 can be around 
positions where there are no missing values in the original data set.  Knowing the variance 
and the derivatives of the processed data are close to that of the real data points, we can 
develop a more robust method to find a reliable approximation of f for the type of dataset 
we have, where data are sampled at different frequencies and the system being described is 
multi-scale. 
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