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1 Commitment Planning for Drawdown Vehicles in a Stochastic
Setting

Over the past several decades investments in illiquid asset classes such as venture capital, private equity
and private credit (hereafer we’ll refer to these asset classes collectively as “alternatives”) have played an
increasingly large role in the portfolios of many institutional investors. For example based on S&P Global
SNL Financial data, GSAM estimates that private equity accounted for $122bn of the assets on US Life
Insurers’ balance sheets as of year end 2021 compared to $8.6bn as of year end 2006. Unlike investing in liquid
asset classes such as public equity, investing in alternatives is typically implemented through commingled
limited partnership (LP) funds. These structures introduce implementation challenges not present in the
context of liquid public investments. Per [Takahashi and Alexander(2002)]:

“The funds are raised every few years on a blind pool basis by general partners who actively
invest, manage and harvest portfolio investments. At the onset of the partnership, investors
commit capital that gets drawn down over several years by the general partner. The uncertain
schedule of drawdowns, unknowable changes in the valuation of the partnership’s investments,
and unpredictable distributions of cash or securities to the limited partners combine to make it
difficult to predict accurately the future value of partnership interests.”

Therefore in addition to the standard problem of deciding their strategic asset allocation (SAA), when
investing in alternatives the investor is also faced with the non-trivial problem of designing a multi-year
commitment plan (CP) that will achieve a desired alternatives allocation. The LPs (investor clients whose
financial interests are to be served) make capital commitments to the general partners (GPs) of the fund, the
GPs then call this capital over a period of years, invest the capital and eventually unwind the investments and
distribute cash flows back to the LPs. [Takahashi and Alexander(2002)] introduced a commitment planning
model (often referred to as the “Yale model”) which will be described in the subsequent section. While the
Yale model offers a very useful and intuitive framework for projecting cash flows of alternative assets, one
drawback it suffers from is the assumption of a constant deterministic rate of return for each alternative
asset class. Under this assumption a CP can be easily designed that reaches a given target allocation for
each alternatives asset class (in steady state). However in the stochastic context, where returns for each
asset class are stochastic the CP may need to be dynamically adapted over time. A balance must also be
sought between the complexity of the commitment plan (which will generally have to be something simple
enough to describe and put into writing within an investment policy statement) and the expected ability of
the CP to quickly ramp up to and track the desired asset allocation.

The Yale model [Takahashi and Alexander(2002)] keeps track of the following variables for a given fund
as a function of discrete time period t, which we take as an integer measuring year since the entrance of the
investor:
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Variable Name Description

C Capital contributions Capital called by the GP ($)
D Capital distributions Capital distributed by the GP ($)
NAV Net Asset Value Estimated fair market value of the fund assets ($)

The model is calibrated using the following parameters

Variable Name Description

RC(t) Rate of contribution Rate of capital calls by the GP in year t (%)
CC Capital commitments ($) LP’s total commitment to GP ($)
L Life of fund Total number of years fund is active (years)

B Bow
Factor describing changes in the
rate of distribution over time

G Annual Growth Rate (%) Assumed rate of return
Y Yield (%) Only applicable for yield focused asset classes

It is also convenient to define variables for the following quantities which are derived from above

Variable Name Description

PIC Paid in capital Sum of capital contributions to date ($)
RD(t) Rate of distribution Rate of capital distributions in year t (%)

The dynamics of the model over discrete time periods of years are governed by the following relationships

PIC(t) =

t−1∑
i=0

C(i) (1a)

C(t) = RC(t)

(
CC − PIC(t)

)
(1b)

D(t) = RD(t)

(
NAV(t−1)(1 + G)

)
(1c)

RD(t) = max
(
Y, (t/L)B

)
(1d)

NAV(t) =
(
NAV(t−1)(1 + G)

)
+ C(t) −D(t) (1e)

The first equation just expresses the total capital already paid in by the LP by year t as a simple sum of the
capital contributions made in each previous year. The second equation expresses the amount of capital to be
contributed in year t as the remaining committed capital of the LP multiplied by the contribution rate set
by the GP. For strategic planning purposes, this contribution rate RC(t) will be specified empirically from
historical data. The third equation expresses the distribution received in year t as the net asset value from
the previous year augmented by its growth over the subsequent year, multiplied by the rate at which the
fund sheds distributions. The fourth equation specifies the distribution rate in terms of a power law growth
from the inception of the fund to its closing, with a floor set by the underlying yield when relevant. Note the
fund will be entirely liquidated and returned to the investors at the end of the fund’s life (RD(L) = 1). The
last equation expresses the updated net asset value of the fund by combining the growth from the previous
year with the net inflow of capital into the fund from the LP.

1.1 Commitment Planning Using the Yale Model

Consider the problem faced by an investor who has, via some process external to the considerations here,
arrived at a desired target allocation level T ($) for some asset class (e.g. Buyout). In other words, T is the
level of investment (exposure) NAV(t) desired in the asset class. Further let’s assume that investments in the
asset class in question are typically implemented using the limited partnership structure described above.
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The investor must figure out what level of annual commitments to Buyout funds will lead to the desired
target allocation level. The Yale model may be used for this purpose.

In reality, the investor client will want to diversify their alternatives investment into funds raised in
various years, rather than a single fund opportunity. Following the industry’s language, we refer to the year
index in which a fund is raised as a vintage. If we simply assume the funds of each vintage have the same
growth rate G, then the Yale model is simply extended by indexing all state variables by the vintage v of the
fund they reference; this is done in the superscript. Thus, Equations (1) are now extended by consideration
of various fund vintages to read:

PIC
(v)
(t) =

t−1∑
i=0

C
(v)
(i) (2a)

C
(v)
(t) = RC(t−v)

(
CC(v) − PIC

(v)
(t)

)
(2b)

D
(v)
(t) = RD(t−v)

(
NAV

(v)
(t−1)(1 + G)

)
(2c)

RD(t) = max
(
Y, (t/L)B

)
(2d)

NAV
(v)
(t) =

(
NAV

(v)
(t−1)(1 + G)

)
+ C

(v)
(t) −D

(v)
(t) (2e)

For this idealized setting, one can solve in closed form for a commitment plan that exactly maintains the
desired target allocation NAV(t) = T for all t ≥ 0, where

NAV(t) =

t−1∑
v=0

NAV
(v)
t (3)

This solution will be developed as a warmup exercise for the main problem, which we specify next.

1.2 Stochastic Extension Single Asset Class

In reality, we do not expect the growth rate of a fund to be a simple known constant. Rather, we can
expect at least two types of uncertainty. One is general dynamical stochasticity, so that the growth rate
of a given fund of a given vintage has some independent noise in each time period, with some specified
probability distribution. The second is variability across vintages. For example, the growth rate of a fund
with a vintage of 2021 might perform quite differently from one with a vintage of 2019. To account for both

of these uncertainties, we replace the constant deterministic growth rate G in Eq. (2) with a rate G
(v)
(t) with

random variations both across vintages and time. We can no longer expect to be able to design a strategy
that meets the ideal target allocation NAV(t) = T precisely, so the goal now is to design a commitment plan
such that the tracking error between the realized allocation NAV(t) and the desired allocation T is as small
as possible in some probabilistic sense. The commitment plan could take the form of a relationship

CC(v) = f
(

CC(0), . . . ,CC(v−1),NAV
(0)
(v−1), . . . ,NAV

(v−1)
(v−1)

)
(4)

between the capital committed to the vintage of the funds being currently planted and the capital commit-
ments to previous fund vintages together with their associated valuations. Furthermore there is a qualitative
balance to be struck between the complexity of the functional form of f and its ability to achieve the tracking
error minimization goal stated above. The commitment plan (4) would naturally also be expected to depend

on the parameters describing the randomness of G
(v)
(t) .

1.3 Stochastic Extension Multi-Asset Portfolio

If time permits, the analysis could be extended to multi-asset portfolios where the investor has a target allo-
cation for several illiquid asset classes, as well as several liquid asset classes. The Yale model parametrizations
for each illiquid asset class may be distinct. Furthermore the growth rates for each asset class have some
non-trivial covariance structure.
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